Refine Your Search

Topic

Author

Search Results

Technical Paper

Economic and Environmental Tradeoffs in New Automotive Painting Technologies

1998-02-23
981164
Painting is the most expensive unit operation in automobile manufacturing and the source of over 90 percent of the air, water and solid waste emissions at the assembly plant. While innovative paint technologies such as waterborne or powder paints can potentially improve plant environmental performance, implementing these technologies often requires major capital investment. A process-based technical cost model was developed for examining the environmental and economic implications of automotive painting at the unit operation level. The tradeoffs between potential environmental benefits and their relative costs are evaluated for current and new technologies.
Technical Paper

Chain Representations of Dimensional Control: A Producibility Input for Concurrent Concept Design

1998-06-02
981846
Two critical milestones that must be achieved during concept design are 1) definition of a product architecture that meets performance, producibility, and strategic objectives, and 2) estimation of the integration risk in each candidate concept. This paper addresses these issues by describing the role played by the producibility members of an Integrated Product Team (IPT) during concept design. Our focus is on the execution of the what we call the “chain method”, which illustrates the structure of function delivery in a concept in a simple pictorial way and helps the IPT to understand the advantages or disadvantages of using a modular or an integral product architecture. The producibility members play a central role in capturing and evaluating the chains for different candidate concepts and decompositions.
Technical Paper

Optimal Forming of Aluminum 2008-T4 Conical Cups Using Force Trajectory Control

1993-03-01
930286
In this paper we investigate the optimal forming of conical cups of AL 2008-T4 through the use of real-time process control. We consider a flat, frictional binder the force of which can be determined precisely through closed-loop control. Initially the force is held constant throughout the forming of the cup, and various levels of force are tested experimentally and with numerical simulation. Excellent agreement between experiment and simulation is observed. The effects of binder force on cup shape, thickness distribution, failure mode and cup failure height are investigated, and an “optimal” constant binder force is determined. For this optimal case, the corresponding punch force is recorded as a function of punch displacement and is used in subsequent closed-loop control experiments. In addition to the constant force test, a trial variable binder force test was performed to extend the failure height beyond that obtained using the “optimal” constant force level.
Technical Paper

A Graphical Workstation Based Part-Task Flight Simulator for Preliminary Rapid Evaluation of Advanced Displays

1992-10-01
921953
Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.
Technical Paper

A Numerical Model of Piston Secondary Motion and Piston Slap in Partially Flooded Elastohydrodynamic Skirt Lubrication

1994-03-01
940696
This paper presents a numerical model of the rotational and lateral dynamics of the piston (secondary motion) and piston slap in mixed lubrication. Piston dynamic behavior, frictional and impact forces are predicted as functions of crank angle. The model considers piston skirt surface waviness, roughness, skirt profile, thermal and mechanical deformations. The model considers partially-flooded skirt and calculates the pressure distributions and friction in the piston skirt region for both hydrodynamic and boundary lubrication. Model predictions are compared with measurements of piston position using gap sensors in a single-cylinder engine and the comparison between theory and measurement shows remarkable agreement.
Technical Paper

Research Alliances, A Strategy for Progress

1995-09-01
952146
In today's business climate rapid access to, and implementation of, new technology is essential to enhance competitive advantage. In the past, universities have been used for research contracts, but to fully utilize the intellectual resources of education institutions, it is essential to approach these relationships from a new basis: alliance. Alliances permit both parties to become active participants and achieve mutually beneficial goals. This paper will examine the drivers and challenges for industrial -- university alliances from both the industrial and academic perspectives.
Technical Paper

Cost Awareness in Design: The Role of Data Commonality

1996-02-01
960008
Enhanced information management techniques made available through emerging Information Technology platforms hold a promise of providing significant improvements in both the effectiveness and efficiency of developing complex products. Determining actual management implementations that deliver on this promise has often proven elusive. Work in conjunction with the Lean Aircraft Initiative at MIT has revealed a straight forward use of Information Technology that portends significant cost reductions. By integrating previously separate types of data involved in the process of product development, engineers and designers can make decisions that will significantly reduce ultimate costs. Since the results presented are not specific to particular technologies or manufacturing processes, the conclusions are broadly applicable.
Technical Paper

Time-Resolved, Speciated Emissions from an SI Engine During Starting and Warm-Up

1996-10-01
961955
A sampling system was developed to measure the evolution of the speciated hydrocarbon emissions from a single-cylinder SI engine in a simulated starting and warm-up procedure. A sequence of exhaust samples was drawn and stored for gas chromatograph analysis. The individual sampling aperture was set at 0.13 s which corresponds to ∼ 1 cycle at 900 rpm. The positions of the apertures (in time) were controlled by a computer and were spaced appropriately to capture the warm-up process. The time resolution was of the order of 1 to 2 cycles (at 900 rpm). Results for four different fuels are reported: n-pentane/iso-octane mixture at volume ratio of 20/80 to study the effect of a light fuel component in the mixture; n-decane/iso-octane mixture at 10/90 to study the effect of a heavy fuel component in the mixture; m-xylene and iso-octane at 25/75 to study the effect of an aromatics in the mixture; and a calibration gasoline.
Technical Paper

The National Space Biomedical Research Institute Education and Public Outreach Program: Engaging the Public and Inspiring the Next Generation of Space Explorers

2005-07-11
2005-01-3105
The National Space Biomedical Research Institute (NSBRI), established in 1997, is a twelve-university consortium dedicated to research that will impact mankind's next exploratory steps. The NSBRI's Education and Public Outreach Program (EPOP), is supporting NASA's education mission to, “Inspire the next generations…as only NASA can,” through a comprehensive Kindergarten through post-doctoral education program. The goals of the EPOP are to: communicate space exploration biology to schools; support undergraduate and graduate space-based courses and degrees; fund postdoctoral fellows to pursue space life sciences research; and engage national and international audiences to promote understanding of how space exploration benefits people on Earth. NSBRI EPOP presents its accomplishments as an educational strategy for supporting science education reform, workforce development, and public outreach.
Technical Paper

Urban Vehicle Design Competition - History, Progress, Development

1972-02-01
720497
The Urban Vehicle Design Competition was inspired by the success of the Clean Air Car Race and the Great Electric Car Race. The academic community recognized the tremendous educational value of these events, and encouraged development of UVDC from its inception. The project was designed by engineering students to benefit students throughout North America. The rules of the competition include technical paper requirements that make the competition extremely attractive to professors who wish to build a course around this theme. The response of more than 2000 engineering students at 80 universities throughout the United States and Canada has indicated the success of the structure of the competition. The first major objective of the UVDC project has been met. Ninety-three teams throughout the country entered the UVDC design portion of the contest. The second portion of the project is the prototype contest of August 1972.
Technical Paper

Time Resolved Measurements of Exhaust Composition and Flow Rate in a Wankel Engine

1975-02-01
750024
Measurements were made of exhaust histories of the following species: unburned hydrocarbons (HC), carbon monoxide, carbon dioxide, oxygen, and nitric oxide (NO). The measurements show that the exhaust flow can be divided into two distinct phases: a leading gas low in HC and high in NO followed by a trailing gas high in HC and low in NO. Calculations of time resolved equivalence ratio throughout the exhaust process show no evidence of a stratified combustion. The exhaust mass flow rate is time resolved by forcing the flow to be locally quasi-steady at an orifice placed in the exhaust pipe. The results with the quasi-steady assumption are shown to be consistent with the measurements. Predictions are made of time resolved mass flow rate which compare favorably to the experimental data base. The composition and flow histories provide sufficient information to calculate the time resolved flow rates of the individual species measured.
Technical Paper

Substitution of Steam for Nitrogen as a Working Fluid in Atmosphere Free Spark Ignition Engines - Theory and Test Results for Steam, Oxygen, and Fuel

1962-01-01
620235
This paper summarizes the results of both the preliminary studies and the initial cycle tests of a unique type of IC engine capable of operating in the absence of an atmosphere. This engine has been designed specifically for use in the general space program, and it is intended to satisfy requirements of high power to weight ratio, reliability, compactness, and short development time. The history of the en-engine's development is discussed together with problems encountered in the study. However, primary emphasis is on the recently conducted cycle tests.
Technical Paper

Structural Changes in the World Auto Companies: The Emerging Japanese Role

1982-02-01
820444
Japan’s recent dominance of the international auto industry does not result from some major single factor, such as technological superiority or advanced automation. It derives from twenty years of building flexible, durable industrial systems integrating assemblers, suppliers, and related companies. Current competitive advantages result from combinations of seemingly unrelated company, government, and labor practices. Japan’s position of leadership will instigate major changes in international labor forces, corporate strategies, and government policies, as former auto powers adapt to new competition, and simultaneous shifts in energy and economics.
Technical Paper

Scavenging the 2-Stroke Engine

1954-01-01
540258
THE indicated output of a 2-stroke engine is primarily dependent upon the success with which the products of combustion are driven from the cylinder and are replaced by fresh air or mixture during the scavenging period. Such replacement must, of course, be accomplished with a minimum of blower power. This paper deals with various aspects of 2-stroke research conducted at M.I.T. during the past 10 years. Among the subjects discussed are the methods used in the prediction and measurement of scavenging efficiency, and the effect of engine design and operating variables on the scavenging blower requirements as reflected by the scavenging ratio.
Technical Paper

IGNITION OF FUELS BY RAPID COMPRESSION

1950-01-01
500178
THE autoignition characteristics of several fuels under various conditions of mixture strength, compression ratio, and temperature have been studied by means of a rapid-compression machine. The behaviors of a knock inhibitor, tetraethyl lead, and a knock inducer, ethyl nitrite, have also been studied. Simultaneous records of pressure, volume, and the inflammation have been obtained. These records show the diverse aspects of the autoignition phenomenon and indicate, among other things, according to the authors, that a comparison of the detonating tendencies of fuels must include not only a consideration of the length of the delay period but also an evaluation of the rate of pressure rise during autoignition. Physical interpretations of the data are presented but chemical interpretations have been avoided. The work was exploratory in nature. The authors hope that the results will stimulate activity in this important branch of combustion research.
Technical Paper

A Full Scale Class 8 Conventional Tractor-Trailer in the 9×9m Wind Tunnel

1988-10-01
881876
This paper outlines the techniques used to install both a full scale and a half scale tractor-trailer model in the 9×9 meter National Research Council of Canada wind tunnel in Ottawa, Canada. The objectives were to measure the cooling drag of an active cooling system and to investigate the aerodynamic testing limits of long, yawed models inside a solid wall wind tunnel. The tunnel interference problem is discussed as it pertains to the upstream boundary, test section floor, downstream boundary, ceiling and side walls and tractor-trailer surface pressure measurements. A potential solution to the problem, however, is the subject of a follow-up paper.
Technical Paper

Implications of Contingency Planning Support for Weather and Icing Information

2003-06-16
2003-01-2089
A human-centered systems analysis was applied to the adverse aircraft weather encounter problem in order to identify desirable functions of weather and icing information. The importance of contingency planning was identified as emerging from a system safety design methodology as well as from results of other aviation decision-making studies. The relationship between contingency planning support and information on regions clear of adverse weather was investigated in a scenario-based analysis. A rapid prototype example of the key elements in the depiction of icing conditions was developed in a case study, and the implications for the components of the icing information system were articulated.
Technical Paper

Mission Planning and Re-planning for Planetary Extravehicular Activities: Analysis of Excursions in a Mars-Analog Environment and Apollo Program

2006-07-17
2006-01-2297
Future planetary extravehicular activities (EVAs) will go beyond what was experienced during Apollo. As mission duration becomes longer, inevitably, the astronauts on the surface of the Moon and Mars will actively plan and re-plan their own sorties. To design robust decision support aids for these activities, we have to first characterize all the different types of excursions that are possible. This paper describes a framework that organizes parameters and constraints that define a single planetary EVA. We arrived at this framework through case studies: by reviewing the EVA lessons learned during Apollo, conducting an observational study of excursions in a Mars-analog environment, and applying part of the framework to a prototype path planner for human planetary exploration.
Technical Paper

Introduction of Functional Periodicity to Prevent Long-Term Failure Mechanism

2006-04-03
2006-01-1203
One of the goals of designing engineering systems is to maximize the system's reliability. A reliable system must satisfy its functional requirements without failure throughout its intended lifecycle. The typical means to achieve a desirable level of reliability is through preventive maintenance of a system; however, this involves cost. A more fundamental approach to the problem is to maximize the system's reliability by preventing failures from occurring. A key question is to find mechanisms (and the means to implement them into a system) that will prevent its system range from going out of the design range. Functional periodicity is a means to achieve this goal. Three examples are discussed to illustrate the concept. In the new electrical connector design, it is the geometric functional periodicity provided by the woven wire structure. In the case of integrated manufacturing systems, it is the periodicity in scheduling of the robot motion.
Technical Paper

Recommendations for Real-Time Decision Support Systems for Lunar and Planetary EVAs

2007-07-09
2007-01-3089
Future human space exploration includes returning to the Moon and continuing to Mars. Essential to these missions is each planetary extravehicular activity, or EVA, where astronauts and robotic agents will explore lunar and planetary surfaces. Real-time decision support systems will help these explorers in efficiently planning and re-planning under time pressure sorties. Information and functional requirements for such a system are recommended and are based on on-going human-computer collaboration research.
X